
UML-driven Information Systems and their Formal
Integration Validation and Distribution ⋆

Nasreddine Aoumeur and Gunter Saake

Otto-von-Guericke-Universität Magdeburg
Institut für Technische und Betriebliche Informationssysteme

PF 4120, D–39016 Magdeburg, Germany
{aoumeur, saake}@iti.cs.uni-magdeburg.de

Abstract. Being the de-facto standard (object-oriented-OO) method(-logy) for
software-intensive systems development, UML with its different diagrams and
supporting tools represent nowadays the mostly adopted software-engineering
means for information systems (IS). Nevertheless, due to this wide-acceptance
by all organization stakeholders several enhancements at the modelling level are
required before adventuring into further implementation phases. The coherence
and complementarity between different diagrams have to tackled; On the basic
of such endeavored coherent global view, the consistency and validation of the
whole IS conceptual models are to undertaken; and last but not least as current
information systems are mostly networked and concurrent, UML-driven have to
cater for intrinsic distribution and concurrency.
To leverage UML-driven IS conceptual modelling towards these crucial enhance-
ments, we propose a semi-automatic intermediate abstract phase before any im-
plementation, we govern by a rigorous component-based operational and visual
conceptual model. Referred to as CO-NETS, this specification/validation formal-
ism is based on a tailored formal integration of most OO concepts and mecha-
nisms enhanced by modularity principles into a variant of algebraic Petri Nets.
For rapid-prototyping purposes, CO-NETS is semantically interpreted into rewrit-
ing logic. This UML-CO-NETSproposal for distributed IS rigorous development
is illustrated through a non-trivial case-study for production systems.

1 Introduction

With the networking of most organizations into cross-organizationalgiants, where emerg-
ing collaborations and interactions and are the driving forces, information systems (IS)
as the ”digitalized” accurate mirror of these new organizational interaction-driven re-
alities are consequently under extreme pressure to keep in pace with these advances.
For a reliable development of today’s IS integrated semi-formal and formal OO mod-
elling frameworks have been widely adopted, providing powerful abstraction mecha-
nisms for intrinsically integrating and building-on structural and behavioral features
(e.g. OMTROLL [1], fOOSE [2]).

⋆ This research is partially supported by a DFG (German Science Foundation) Project Under
Contract SA 465/31-1

This contribution fits within these efforts, and it proposesto extend the semi-formal
UML [3] method with more formality, global coherence, validation and distribution.
We thus propose a validation based on a sound framework whichallows us to shift
from UML-driven IS conceptual modelling towards a fully distributed specification
consisting of cooperative components. We hence extend UML-diagrams for fulfilling
more advanced requirements including: (1) Intra- as well asinter-object concurrency;
(2) synchronous and asynchronous communication; (3) specification of components as
hierarchy of classes; (4) Explicit inter-component interactions without violating encap-
sulated part of each component; and (5) graphical animationaccompanied by formal
concurrent reasoning.

The proposed framework for this advanced specification/validation phase is a new
form of component-based Petri nets model that we interpret in rewriting logic. Re-
ferred to as CO-NETS, this specification/validation formalism [4] is mainly character-
ized by the following key features: (1) To promote inter-communication and autonomy,
CO-NETS explicitly distinguishes between local aspects and external ones in a given a
component; (2) To enhance Behavior-centricity, we interact components through their
explicit interfaces; (3) CO-NETS semantics is interpreted in rewriting logic[5] which is
a true-concurrent operational semantics particularly allowing rapid-prototyping.

The rest of this paper is organized as follows. The second section informally intro-
duces the case study through which we illustrate the different phases of our proposal.
The third section presents UML class- object- and state-diagrams as well as OCL con-
straints in the form of pre- and post-conditions. In the third section we review the main
CO-NETS features we focus on subsequently. In the main section, we present our ideas
for shifting from these four diagrammatical views into a corresponding unique coherent
CO-NETS specification. The fourth section deals with the validationphase by illustrat-
ing how transition rewrite rules are automatically derived. We finally close this paper
with some concluding remarks and an outlook on future extensions.

2 The Holonic Transport Case Study

As depicted in the left-hand side of Figure below, we concerned with a part of a pro-
duction system where specific work pieces (OBJECT) are processed by three different
machines (Mx) in a specific order. The transport of the work pieces is carried out by
so called ”Holonic Transport Systems” (HTS) which are mobile robots. Machines have
to initiate JOBs to execute transports of work pieces. These HTS have to beconcur-
rent andself-organizing in a way that they locally decide by competing offers which
transport job they execute.

time-limit for

start

Machine 3

Machine 2

Machine 1

Entry buffer

Exit buffer

Machine 1

Machine 2

Machine 3 Holonic Transport System

Exit buffer

Entry buffer

negotiation

timeout

Holonic Transport System
-4

Calculate and broadcast offer

-

HTS3

HTS4

HTS5

HTS2

5

-

HTS3

HTS4

HTS5

HTS2

5HTS1 HTS3

HTS4

HTS5

HTS2

5HTS1HTS1

HTS 5HTS 2HTS 1 HTS 3 HTS 4

blocked malfunction

Send transport job to all HTS

available available available

Cancel

Cancel Approval

JOB

DEMANDOFFER

COMPONENT

MACHINEHTS

DESTINATION

BUFFER

SOURCE

EXITBUFFER ENTRYBUFFER

OUT IN

OBJECT

Object

Machine(mid: nat)

Object

Client

Job(jid: nat)

HTS(hid: nat)

Partner

CLOCK

Object(oid: nat)

OBJECT

Clock

OBJECT

DestinationSource

Additionally, there are two buffers in that scenario. The first one (IN) provides
“fresh” (entirely unprocessed) work pieces, whereas completely processed work pieces
are delivered into the second one (OUT). Every machine consists of local entry and
exit buffers which may store unprocessed/processed work pieces. Each time an object
is removed from the local entry buffer or inserted into the local exit buffer, the machine
calls for a HTS to deliver a new or remove a processed work piece. This way, we can
distinguish between demand- (DEMAND) and offer-jobs (OFFER).

A possible scenario is as like. A machineMx generates a request and sends it to-
gether with a time-stamp via broadcast to allHTS. When aHTS receives the request, it
first checks the current time and compares it with the requests time-stamp. If the elapsed
time lies below a certain time-limit, theHTS may proceed the negotiation process. If a
HTS is currently unable to perform the requested job for some reason it sends anunable
message to all otherHTS and aborts the negotiation. Otherwise the offer is calculated,
sent to the otherHTS and entered into an internal cost comparison table (CCT). Until
the time-limit is reached, allHTS collect the offers of the otherHTS and enter them
into their CCT.

3 UML -Specification of the Case-study

We model here theclass-diagrams to cover the static aspects andstate diagrams de-
scription to represent the dynamic part of the specification[3].

3.1 Class and Object-Diagrams

The right-hand side of the Figure above depicts the possibleclasses. The classCOM-
PONENT, for instance, acts as a super-class for all active components (HTS, machines,
buffers).HTS have to control the flow of work pieces in the scenario. The classJOB
is an abstraction of a task a HTS must perform. Machines have local entry (SOURCE)
and exit-buffers (DESTINATION). A BUFFER models an abstract super-class to in-
sert, store, and release a (limited) number of work-pieces.Elements of classOBJECT
model the work pieces. They are identified using the attributeoid.

3.2 State Diagrams

With the behaviour state-diagram, different states of the objects in the scenario with
state transition rules depicting the necessary preconditions and events are described.
The Left-side of Figure 1 depicts the state diagram of the classHTS. By occurrence
of the birth eventstart the HTS changes its state intoready. Receiving a job request
from a machine in this state (receive job) changes the HTS into the statereceived J.
In case a partner is required to perform the requested job, the HTS has to determine and
contact all possible partners for the job (request Partner). Otherwise (e. g. if the HTS
already carries a requested work piece) it may directly calculate the offer by the event
calc Offer and make thereby a transition into the statecalculated. In thecontacted
state, the HTS will have to wait until either all contacted partners have answered the
request or a predefined time-limit (rlimit) has elapsed. The remaining HTS at this time
may send the approval for the job (send Approval).

ready demand
start

[D
es

t.f
re

e>
0]

 n
ex

t_
O

bj
ec

t

approved_D

[ntime<=nlimit] receive_ApprovalD

[Source.available>0] process_Object

processed
[Dest.free=0] send_JobO

offer

[ntime>nlimit] abort_Offer

[ntime<=nlimit] receive_ApprovalO

approved_O[rtime<=rlimit] deliver_Object

[ntime>nlimit] abort_ApprovedO

[Source.available=0] send_JobD

[ntime>nlimit] abort_Demand

requested

[rtime>rlimit] abort_ApprovedD

[rtime<=rlimit] receive_Object

se
nd

_P
ar

tn
er

[S
ou

rc
e.

av
ai

la
bl

e>
0]

 r
ec

ei
ve

_R
eq

ue
st

O

[D
es

t.f
re

e>
0]

 r
ec

ei
ve

_R
eq

ue
st

D

start

received_J contacted

received_A

calculated

[exist_offer AND ntime<=nlimit] send_Offer

[NOT exist_offer OR ntime>nlimit] send_Abort

[rtime>=rlimit OR cnt(answers)=max_answer] calc_Offer

sended

received_O

approved

[ntime<=nlimit] receive_Offer

[my_offer>best_offer] abort

[ntime>nlimit] send_Approval

[partner_required] request_Partner

[r
tim

e<
=

rli
m

it]
 r

ec
ei

ve
_P

ar
tn

er

[rtime<rtlimit AND cnt(answers)<max_answer] wait_Answer

[NOT partner_required] calc_Offer

[m
y_

of
fe

r=
be

st
_o

ffe
r]

 w
ai

t_
O

ffe
r

receive_Job

[rtime>rlimit] send_Abort

ready

Fig. 1.State Diagram ofHTS andMachine Classes

3.3 OCL- pre- Post-Constraints

We further judge that relevant to the modelling phase belongs also the dynamic de-
tail about different methods, namely their enabling pre-conditions and resulting post-
conditions. With the modelling of such methods features at the modelling level, we
result in more controlled implementation outputs, where the programmers have to be
bounded by a minimal conceptual constraints in developing the body of each meth-
ods. Pre- and Post-constraints are further crucial for our subsequent phase, where they
have to govern different transition input/output arc inscriptions and thereby the to-be-
conceived nets.

Method Name Pre-Constraint Post-Constraint

receive Job(j:JOB) sendAbortA or sendAbortB Jobs:=Jobs.insert(j),
calc OfferA, requestPartner

receive Partner(m:MACHINE,costs:nat) rtime≤rlimit , requestPartneranswers:=answers+,
mk-set(mk-tuple(m,costs)),
wait Answer, calcOffer

receive Offer(h:HTS,costs:nat) ntime≤nlimit offers:=offers+mk-set
(mk-tuple(h,costs)),
wait Offer, abort

request Partner(j:JOB) partnerrequired=true m.receiveRequestD(self,j),
m.receiveRequestO(self,j)

receive Job(j:JOB) sendAbortA or sendAbortB Jobs:=Jobs.insert(j),
calc OfferA, requestPartner

With respect to the running case study, we depict in the following some of these pre-
and post-conditions to be associated with different methods related different classes in
the above discussed class-diagram. For instance, thereceive job method should
preceded by the execution of the two methodssend AbortA andsend AbortB. The
resulting output consists in incrementing the job list by the requested to-be-performed
job and by the triggering of the two following methodscalc OfferA and
request Partner.

After achieving this analysis / modelling phase, we have nowto leverage it to more
cohesive view, where distribution, componentization, visual and symbolic validation
are intrinsic. The corresponding specification/validation framework we are putting for-
wards is CO-NETS, a tailored form of integration of OO structuring mechanisms with
high-level algebraic Petri nets that we soundly interpret in rewriting logic.

4 The CO-NETS Approach : An Overview

For the purpose of this paper and also due to space limitation, only some CO-Nets1

aspects are reviewed in what follows. Reader is referred to [4] for more detail.

4.1 Component structural Specification

States in CO-NETS are terms of the form〈Id|at1 : v1, ..., atk : vk, bs1 : v′

1, ..., bsk′ :

v′

s〉; whereId is an object identity ;at1, .., atk are local andbs1, ..., bss are observed
from other components.We further allows ’splitting / recombining’ this state at request.
Similarly, we explicitly distinguish between internal, local messages and the external as
imported/exported messages. Local messages allow for evolving the object states of a
given class, while the external ones allow for communicating between different classes
using exclusively their observed attributes.

4.2 Component behavioral Specification

On the basis of this component signature, we define the notionof CO-NETS specifi-
cation incrementally as follows. CO-NETS places are precisely defined by associating
with each message generator (type) one place we call ’message’ place. We also asso-
ciate with each component sort one place that has to contain the current states within
such component. CO-NETS transitions reflect the effect of messages on the targeted
states. We further make distinction between local transitions that reflect state changes
and the external ones modeling the interaction between different components.

4.3 CO-NETS : Semantical Aspects

As general behavioral pattern for transitions, we propose that the effect of CO-NETS

transitions capture the following interaction-driven computation. The contact of state
parts in a given componentnCl, —namely〈I1|ats1〉 ;..; 〈Ik|atsk〉— with some mes-
sagesmsi1, .., msip, msj1, .., msjq—declared aslocal or imported in this component—
and under some conditions on the invoked attributes and message parameters results
in the following effects: (1) Messages such asmsi1, .., msip, msj1, .., msiq vanish;
(2) State changes of some (parts of) states participating inthis computation, namely
Is1, .., Ist; (3) Deletion of some states by sending explicitly delete messages; and new
messages are sent to the componentCl state, namelyms′

h1
, .., ms′

hr , ms′
j1, .., ms′

jq.

1 An acronym forConcurrentObject oriented PetriNet.

Conditions on attributes values
 and messages parameters

i1 . .

. .

.. j1

ms
ms

i1

ms´ ms´

ip

h1
hr

 jq

ip

ms´
 j1

ms´
 jq

ms
 j1

ms
 jq

obj
T

Mes Mes

Mes
Mes

Mes
 hr

 h1

.

Mes

〈Ij |atj : vj..〉

〈I1|ats1〉.. ⊕ 〈Ik|atsk〉

〈Is1
|ats′s1

〉.. ⊕ 〈Ii1
|ats′i1

〉..

Fig. 2. The Intra-Component Computation Pattern.

Rewriting rules governing theCO-NETSbehaviour Each CO-NETS transition is cap-
tured by an appropriate rewriting rule interpreted into rewrite logic[5]. Following the
intra-component evolution pattern in figure 2, the general form of rewrite rules that we
associate with it takes the form below. The operator⊕ is defined as a multiset union and
allows relating different place names with their current markings. Whereas the multiset
operator⊗ allows composing different couples place-inscription, sothat we can define
different input arcs and output arcs in a given transition. Moreover, we assume that⊗ is
distributive over⊕ i.e. (p, mt1 ⊕ mt2) = (p, mt1) ⊗ (p, mt2) with mt1, mt2 multiset
of terms over⊕ andp a place identifier.
T : (Msi1 , msi1) ⊗ ..(Msjq

, msjq
)⊗ (obj, 〈I1|attrs1〉 ⊕ .. ⊕ 〈Ik|attrsk〉)

⇒ (Msh1
, ms′h1

) ⊗ ...(Ms′jq
, ms′jq

) ⊗ (obj, 〈Is1
|ats′s1

〉.. ⊕ 〈Iir
|attrs′ir

〉)

if Conditions andM(AdCl) = ∅ andM(DlCl) = ∅
We point out that more advanced component-based abstraction mechanisms have

been conceived for capturing inheritance, aggregation andinteraction between compo-
nents [4].

5 From UML-driven IS to CO-NETS Components

After sketching the main concepts of the CO-NETS framework, we discuss in this main
section how to incrementally and (semi-)automatically derive a coherent view of dif-
ferent UML diagrams and OCL constraints based on CO-NETS components. First, we
present how structural features from class classes can be mapped to corresponding CO-
NETS component templates. Further, we address the translation of different behavioral
and dynamic diagrams and OCL constraints in the behavioral sides of the CO-NETS

framework.

5.1 From UML classes toCO-NETS components structure

This translation mainly concerns attribute and message descriptions, and it can be made
precise through the following translating steps.

1. Different attributes associated with a given class-diagram are directly specified as
component states–as tuple terms— by gathering them together and enriching them
with the state identity part. Possibilities in restricting, initializing or fixing some
attributes values have to be expressed as conditions in the creation/deletion compo-
nent transitions.

2. In order to have just one and a uniform view, besides these stateless attributes
that areexplicitly defined in the class-diagrams, explicitly defined states andtheir
changes from the state-diagram have also to be added to the tuple asstateful extra-
attributes.

3. All event / message generators will be regarded as messages by enriching their
arguments with identities of involved states. Moreover, bytaking profit of the com-
munication diagram, all events that are to be sent to other classes have to be defined
asexported ones.

4. From the explicit effect of these external messages described in OCL- pre- and
post-conditions we straightforwardly conceive theobserved attributes part as those
which are explicitly involved in such state changes.

The corresponding CO-NETScomponent signature for the HTS, for instance, is for-
warded in what follows. First we have to specify the data-types that are used in this
template signature for specifying attribute values and/orevent parameters, such as nat-
ural, lists and so on (we are omitting here). The HTS component structure takes then
the form:

obj HTS-signature is
protecting Object-state HTS-DATA .
subsort Id.HTS < OId .
subsort Local HTS External HTS < HTS .
subsort SND OFFR RCV OFFR SND ABR

WAIT ANSW WAIT OFFR
CALC OFFR ABORT APPROVAL < Local HTS Mes .

subsort REQUEST PRT < Exported HTS Mes .
(* local attributes *)
op 〈 |answ : , offr : , rlimt : , nlimt : , nlimt : , my offr : , exist offr : 〉 :
Id.HTS List answ List offr nat nat nat nat bool → Local HTS.
(* observed attributes *)
op 〈 |StH : , rtim : , ntim : , partn : , job : , mx prt : , Jobs : 〉 :

Id.HTS StateH nat nat Id.job Bool nat List job → Ext HTS .
(* local messages*)
op Snd offr, Snd abort, Wait answ : Id.HTS → Local HTS Mes .
op Rcv offr, Wait offr, Cal offr: Id.HTS Real → Local HTS Mes .
op Abort, Approval : Id.HTS Job → Local HTS Mes .
(* export messages*)
op Requst P(artner): Id.Job Id:HTS Id.Mach → Exp HTS Mes .
(* Imported messages*)
op Rcv Job, Rcv P : OId Id.HTS Id.Job → Import HTS Mes

vars H : Id.HTS ; J : Job ; S : List answ.
vars C : Real (cost) ; J : Job ; R, M, L : Nat; Q : Boolean.

endo.

5.2 From UML-behaviral diagrams to CO-NETS

Following the CO-NETS approach, in addition to state places that have to contain the
different current state instances, with each event (now a message) generator a corre-

sponding place is associated. The behaviour of each local event is captured by an ap-
propriate transition, where:

1. The place associated with this event is taken as input place, while the event itself
labels the corresponding input arcs;

2. The OCL pre-condition is expressed either as conditions in this transition or as
appropriate instantiations in the label of the input arc from the state place. If other
messages are required in the pre-conditions, input

3. The OCL post-condition part clause is modeled as an appropriate inscription terms
of an output arc that goes to the object place.

4. Finally thecalling clause is captured by associating output arcs labelled by the
corresponding called messages and destinated to their associated (message) places.

In the same spirit, for communicating different templates,external event behaviour
is captured by transitions that make into relation only external attributes part and im-
ported / exported events. We survey all these translating steps in the table below.

UML Concepts Mapping to the CO-NETSconcepts

Attributes Object state as term with addition of the identity
—constant As constant in the corresponding (algebraic) structure
—restricted, initialized conditions in creation/deletion net
state change in SM additional attributes called State
events messages with explicit identity of the invoked object
— OCL pre- Transition condition
— OCL post- Transition (output) effect

Example 1. By applying the above translating ideas to our running example, we result
in two CO-NETScomponents reflecting respectively the behaviour associated with HTS
and Machine CO-NETS template signatures (i.e. the HTS and the Machine). Moreover
and because the interaction between these two components have to be achieved only
through their explicit interfaces a further ’communicating’ CO-NET is to be conceived
for capturing their interaction.

For instance, by respecting the aforementioned translating steps, the CO-NET as-
sociated with the HTS template is depicted in figure 3. In thisnet, besides the state
placeOBJ HTS that contains all HTS state instances, with each message generator
a corresponding place is associated. Places reflecting imported / exported messages
are represented in bold. For the Job component declared as a subcomponent (in the
HTS TROLL text), we have just represented the places of imported messages namely
RCV ApvD, RCV ApvO, ADD JOB and the exported attributesType of job (i.e.OFFER
or DEMAND). Each transition reflect the effect of messages on thejust concerned state
parts. The transitionRCV JOB, where the messageReceiveJ(J,M,H) (with J, M, H de-
notes respectively job identity, machine identity and HTS identity) enters into with state
part〈H |StateH : Ready,Job : Jb, Partner Rq : R〉. This means that according to the
HTS state diagram, the HTS state ofH should beReadyand their is some (list of) jobs
Jb. The effect of such contact depending on whether a partner isrequested or not (i.e.
the variableR is true or not) is as follows. In the first case (i.e.Partner Rq = True) the

invoked part of HTS object state is modified to〈H |StateH : Calculated, Job : Jb :

J, Partner Rq : R〉 with a simultaneous sending of the messagesRequestP(J,H,M),
Add Job (to the job subcomponent) andCalc Offer(J,H) . In the second case, the HTS
object part of state is modified to〈H |StateH : Contact J, Job : Jb : J, Partner Rq : R〉

with a simultaneous sending of the messagesAdd Job andCalc Offer(J,H) .

6 CO-NETS Specification Certification

The CO-NETS approach with its rewriting logic based operational semantics allows
not only for graphical visual animation of the intra-component computation and the
inter-component cooperation but also for deriving symbolic proofs using the associ-
ated rewrite theory [4]. While validating the modelled component-based information
systems, a strict explicit separation of concerns is adopted where:

– The behavioral certification of a given component (as a classin the simple case)
by concurrent rewriting and simultaneous graphical animation from an initial com-
ponent state iscompletely independent from any other component. The efficiency
intervenes here by the limited number of manipulated transition rewriting rules
compared to the case where the whole system (i.e. when following a usual UML
monolithic process where all classes at stake at once) is analyzed.

– The certification of the communication and the effect of inter-component interac-
tions on the whole system is also achieved independently, bytaking into account
only the interface of the concerned components.

Example 2. By applying the general forms of rewrite rules, it is not difficult to generate
the rules governing the behaviour of bothHTS andMachine components as well as
those of their interactions. Hereafter, due to space limitation we just illustrate it through
two rewrite rules of the HTS component.

RECV JOB2: (RCV JOB, Receive J(J, M, H)) ⊗ (OBJ HTS, 〈H |StateH :

Ready, Job : Jb, Partner Rq : R〉) ⇒ if (R = True) then (OBJ HTS, 〈H |StateH :

Calculated, Job : Jb, Partner Rq :

R〉) ⊗ (REQUEST P, Request P (J, H,M)) ⊗ (ADD JOB, Add job(J)) ⊗

(CALC OFFR,Calc Of(J, H)) else (OBJ HTS, 〈H |StateH : Contacted, Job :

Jb, Partner Rq : R〉) ⊗ (ADD JOB, Add job(J)) ⊗ (CALC OFFR,Calc Of(J, H))

RCV PAR: (RCV PART,Receive P (J, M, C)) ⊗ (OBJ HTS, 〈H |StateH :

Contact, Answ : S〉) ⇒ (OBJ HTS, 〈H |StateH : Ready,Answ :

S.[M, C]〉) ⊗ (WAIT ANS, Wait answ(H)) ⊗ (CALC OFFR, Calc O(Jb, H))

Calc_Offr(H,C)

Receive_J(J,M,H)

The HTS Component as a Co-Net

<H | StateH: Approved, Ntm : N, Nlm : L, Job : J.Jb>

Calc_O(Jb,H)

<H | Ntm:T,NLm:L,offr:F>

Requst_P(J,H,M)

<H | Ntm:T,NLm:L,offr:F.[H,C]>

<H | StateH : Contacted ,Answ: S>

Recv_O(*,0)

Calc_O(J,H)

ADD_J(J)

<H | StateH: Sended, Ntm : N, Nlm : L, Job : Jb>

The Job Subcomponent

Send_abd(H)

<H | StateH: Snd, Exist_O: B, Ntm:T,RTm: R, NLm:L>

<H | StateH: Calculated, My_O : My, Offr : F, Answ : S, Job : Jb.J>

<H | StateH: Calculated, Part_Rq:Q,Rtm:R,RLm:L,Part:P, Offr : F.[H,C]>

<H | StateH: Recv_A, Part_Rq:Q,Rtm:R,RLm:L,Part:P, Offr : F>

Wait_O(*,0)

<H | StateH: Rcv_A, Rtm : R, RLm : M, Answ: S>

<H | StateH: Approval, My_Offr : My>

<H | StateH: Sended, My_Ofr : My>

<H | StateH: Calculated, Rtm : R, RLm : M, Answ: S>

Send_Of(H)

<H | StateH: Calculated, Exist-O:True, Ntm:N,NLm:L,My-Cst:C>

Wait_Of(*,0)

Recv_O(H,C)

<H | StateH : Ready,Answ: S.[M,C]>

<H | StateH: Sended, Exist-O:True, Ntm:N,NLm:L,My-Cst:C>

Receive(H,M,C)

Abort(H,Jb)

OBJ_HTS

<H | StateH : Calc, Job : Jb.J,Parner_Rq:R>

<H | StateH: Contact, Exist_O: B, Ntm:T,RTm: R, NLm:L>

Abort(H,J)

Send_abr(H)

Send_abr(H)

Recv_Of(*,C)

Recv_Of(*,C)

Send_Of(H)

Wait-Ans(H)

<H | StateH : Ready, Job : Jb,Parnter_Rq:R>
<H1 | StateM: Ready, Ntm:r1,Rtm:n1,Ans:S1,Offr:o1,.....>

<J | Type : Tp>

Rcv_AprO(J,H)

Rcv_AprD(J,H)

<H | StateH : Contact,Job:Jb.J,Partner_Rq:R>

Send_aprv(H,J)

Send_aprv(H,J)

Wait-Ans(H)

<H | StateH: Ready, My_O : nil, Offr : nil, Answ : nil, Job : Jb>

(N > L) and (Tp = DEMAND) (N > L) and (Tp = OFFER)

T
he

 E
xp

or
te

d
M

es
sa

ge
s

T
he

 im
po

rt
ed

 M
es

ss
ag

es

. . ..

Add_J(...)

. . ..

RCV_JOBREQUST_P

(Machine.)

(Macghine)

. . ..

My > Best_O

T
he

 I
m

po
rt

ed
 M

es
sa

ge
s

T
he

 E
xp

or
te

d
M

es
sa

ge
s

B = True or T > L

Receive_J(..)

. . ..

Rcv_AprO(.)

Rcv_AprD..)

Receive_J(..)

 Snd_abr(..)
. . ..

SND-ABR

. . ..

. . ..

The Internal Behaviour

. . ..

. . ..

Requset_P()
RCV_JOB

RCV_PR

SND_ABR

WAIT_ANS

WAIT_OFR

CALC_OFR

ABORT

SND_APRV

<J1 | Type : T1,..>

. . ..

OBS_JOB
RCV-AprD

RCV-ApvO

ADD_J

 R =True

 approval(..)

T < L

APPROVAL

R < L

RCV-PART

 Rcv_of(..)
. . ..

RCV_OFFR
SND_OFFR

 Snd_offr(..)
. . ..

WAIT_ANSW

N <= L

SND_OFR

. . ..

CALC_O

My = Best

RCV_OFR

. . ..
 Calc_O(..)

 abort(..)

ABORT

. . ..

(R <= L) or cnt(P) = max_part (Q=true) or

. . ..
 wait_offr(..)

WAIT_OFFR

cnt(S)= max and R <= M

 wait_ans(..)

Else

True

Fig. 3. The HTS CO-NETSSpecification.

7 Conclusions

In this paper, we presented a stepwise proposal for semi-formally modelling and for-
mally specifying and validating advanced distributed information systems. The pro-
posal starts with widely accepted and practitioner-oriented UML methodology. More
precisely, we model the information through its class- communication and statecharts
diagrams plus OCL-pre- and post-conditions. For sake of global coherent view of these
different diagrams, we propose to incrementally derive CO-NETS components, where
intra- computation is explicitly separated from inter-interactions and where rapid-prototyping
are possible with graphical animation and rewriting computations. In order to empha-
size the practicability and the capabilities for developing even complex information
systems, we have applied the proposed methodology to a significant part of a realistic
case study dealing the production cell problem.

Nevertheless, after achieving this very important and firststeps towards develop-
ing advanced information systems, we are conscious that much a work remain ahead.
First, we plan a deeper study for an appropriate and efficienttranslation of the generated
rewriting rules into JAVA programs. Second, we are working for developing a complete
software environment for the CO-NETS framework, including particularly an editor /
simulator and relate it with current UML environment such asRational and Posedion.
For the rewriting sides we are adapting the current implementation of the MAUDE lan-
guage. Last but not least, for coping with the runtime evolution due to frequent changes
we are working on an appropriate reflective extension of the CO-NETS approach.

Acknowledgements

The authors want to warmly thank the three referees for theirconstructive comments,
that significantly helped improving the present final version.

References

1. Jungclaus, R., Wieringa, R.J., Hartel, P., Saake, G., Hartmann, T.: Combining TROLL with
the Object Modeling Technique. In Wolfinger, B., ed.: Innovationen bei Rechen- und Kom-
munikationssystemen. GI-Fachgespräch FG 1: Integrationvon semi-formalen und formalen
Methoden für die Spezifikation von Software. Informatik aktuell, Springer (1994) 35–42

2. Wirsing, M., Knapp, A.: A Formal Approach to Object-Oriented Software Engineering.
ENTCS4 (1996)

3. Booch, G., Jacobson, I., Rumbaugh, J., eds.: Unified Modeling Language, Notation Guide,
Version 1.0. Addison-Wesley (1998)

4. Aoumeur, N., Saake, G.: A Component-Based Petri Net Modelfor Specifying and Validating
Cooperative Information Systems. Data and Knowledge Engineering42 (2002) 143–187

5. Meseguer, J.: Solving the Inheritance Anomaly in Concurrent Object-Oriented Programming.
In: ECOOP’93 - Object-Oriented Programming. Volume 707 of Lecture Notes in Computer
Science., Springer (1993) 220–246

